Chiral Bis(imidazolinyl)phenyl NCN Pincer Rhodium(III) Catalysts for Enantioselective Allylation of Aldehydes and Carbonyl−Ene Reaction of Trifluoropyruvates

Tao Wang, Xin-Qi Hao, Juan-Juan Huang, Jun-Long Niu, Jun-Fang Gong,* and Mao-Ping Song*

Henan Key Laboratory of Chemical Biology and Organic Chemistry, The College of Chemis[try](#page-8-0) and Molecular Engineer[ing](#page-8-0), Zhengzhou University, Zhengzhou 450052, People's Republic of China

S Supporting Information

[AB](#page-8-0)STRACT: [Chiral NCN](#page-8-0) pincer rhodium(III) complexes with bis(imidazolinyl)phenyl ligands were found to be effective catalysts for the allylation of a variety of electronically and structurally diverse aldehydes with allyltributyltin, giving the corresponding optically active homoallylic alcohols in high yields with enantioselectivities of up to 97% ee. These complexes were also applied in the carbonyl−ene reaction of ethyl or methyl trifluoropyruvate with various 2-arylpropenes. With the aid of silver trifluoromethanesulfonate, the pincer rhodium(III) catalysts could catalyze the reaction to provide

the corresponding chiral α-hydroxy-α-trifluoromethyl esters in good yields with high stereoselectivities (up to 95% ee).

■ INTRODUCTION

The uniquely intramolecular, terdentate coordination of pincer ligands to metal centers in a meridional fashion through σ and/ or dative bonds results in transition-metal pincer complexes that exhibit generally high stabilities toward heat, air, and moisture. Since the independent pioneering work of Shaw¹ and van Koten and Noltes² in the 1970s, a wide variety of chemical motifs and various transition metals have been introduce[d](#page-8-0) into pincer skeletons. By [s](#page-8-0)ystematic ligand modifications and/or variation of the metal center, it has been possible to readily control the reactivities, stabilities, and other important properties of the pincer metal complexes. Consequently, such complexes have been widely utilized in organic synthesis, organometallic catalysis, materials science, and the related areas.³ Although these species have been found to be particularly useful as catalysts in a number of metal-mediated organ[ic](#page-8-0) transformations, the development of known or new chiral pincer metal complexes with excellent catalytic activities and stereoselectivities still constitutes one of the most challenging and formidable endeavors in the field of pincer chemistry. Baratta and co-workers⁴ demonstrated that a series of chiral CNN pincer $Ru(II)$ and $Os(II)$ complexes show high enantioselectivities in ketone hydr[og](#page-8-0)enation (up to 99% ee) and transfer hydrogenation (up to 99% ee). Recently, Duan and coworkers⁵ extended the enantioselective hydrophosphination of several kinds of electron-deficient alkenes with secondary phosph[in](#page-8-0)es using the known bisphosphine PCP pincer Pd(II) catalysts, giving chiral phosphine derivatives with excellent enantioselectivities. In addition, it is worth mentioning that chiral NCN pincer metal complexes (e.g., $M = Pd₁^{6} Pt₁⁶ Ni₁⁸$ $Ru₁⁹ Rh₁¹⁰ Ir^{10d,11}$ and Fe¹²) with tridentate bis(oxazolinyl)phenyl (Phebox) ligands have been extensively inves[tig](#page-8-0)at[ed](#page-8-0) an[d](#page-8-0) used in asymmetric catalysis, with most of the work being reported by Nishiyama.¹³ Among them, the Rh−Phebox complexes have attracted much attention and displayed high stereoselectivities in vario[us](#page-8-0) catalytic asymmetric reactions such as conjugate reductions (up to 99% ee),^{10g,h} reductive aldol reactions (up to 98% ee),^{10d,e} β -boration of α , β -unsaturated carbonyl compounds (up to 97% ee),¹⁰ⁱ a[nd al](#page-8-0)kynylation of α -keto esters (up to >99% ee[\).](#page-8-0)^{[10](#page-8-0)f} On the other hand, we have reported C₂-symmetric NCN pincer $Pd(II)$,¹⁴ Pt(II),¹⁵ and $Ni(II)^{16}$ complexes with chi[ral](#page-8-0) 1,3-bis(2'-imidazolinyl)phenyl (Phebim) ligands, which are structural anal[ogu](#page-8-0)es of [Ph](#page-8-0)ebox ligand[s.](#page-8-0) Compared with Phebox ligands, Phebim ligands have the advantage of further tunability of the electron density and steric bulkiness of the ligands by appropriate choice of the substituent on the additional nitrogen atom. 17 The preliminary attempt using a Pd−Phebim complex with a (4S)-phenyl substituent as the catalyst for the asym[me](#page-8-0)tric addition of diphenylphosphine to chalcone gave the expected adduct in 84% yield with 85% ee. 14b Also, a cationic Pt−Phebim complex activated the asymmetric Friedel−Crafts alkylation of indoles with nitroalkenes wit[h u](#page-8-0)p to 83% ee.^{15b} During our study, Nakamura and co-workers¹⁸ also explored the applications of Pd−Phebim complexes in asymmetric [cata](#page-8-0)lysis. They corroborated that the Pd complexe[s a](#page-8-0)re highly enantioselective catalysts for the reaction of benzyl nitriles with imines (up to 92% ee), the aza-Morita−Baylis−Hillman reaction of acrylonitrile with imines (up to 98% ee), the decarboxylative Mannich-type reaction of cyanoacetic acids with imines (up to 90% ee), and allylation of ketimines (up to 95% ee). Furthermore, it was

Received: July 3, 2013 Published: August 12, 2013

The Journal of Organic Chemistry Article 2012 12:30 Article 2013 12:30

found that the related bis(imidazolidine) NCN pincer $Pd(II)$ complexes exhibited high performance in the asymmetric reaction of nitroalkenes with malononitriles (up to 93% ee).¹⁹ Very recently, we reported the first synthesis of NCN pincer Rh(III) complexes with bis(imidazolinyl)phenyl ligan[ds,](#page-9-0) including (Phebim)RhCl₂(H₂O) complexes 1a−e (Scheme 1)

Scheme 1. Chiral C_2 -Symmetric NCN Pincer Rhodium(III) Complexes with Bis(imidazolinyl)phenyl Ligands

as well as the corresponding (Phebim)Rh $(OAc)_{2}(H_{2}O)$ complexes. The potential of these complexes in the catalytic asymmetric alkynylation of trifluoropyruvates with terminal alkynes was evaluated.²⁰ The results of the studies indicated that in the presence of 3.0 mol % (Phebim)Rh(OAc)₂(H₂O) complex, excellent en[ant](#page-9-0)ioselectivities (21 examples, 94−99% ee) could be obtained in the alkynylation of ethyl or methyl trifluoropyruvate with a range of terminal alkynes, including aromatic and heteroaromatic alkynes and conjugated enynes. Moreover, the C₂-symmetric Rh–Phebim complexes consistently provided better enantioselectivities than the related C_2 or C_1 -symmetric Rh–Phebox complexes^{10f} in the addition of aromatic terminal alkynes to ethyl trifluoropyruvate under similar reaction conditions. Encouraged [by](#page-8-0) the above results and also in continuation of our investigations of the pincer metal complexes, 21 we decided to further determine the activity and stereocontrolling potential of the chiral pincer Rh−Phebim complexes. The [hig](#page-9-0)hly enantioselective allylation of aldehydes

and carbonyl−ene reaction of trifluoropyruvates using these complexes as the catalysts are described in this report.

■ RESULTS AND DISCUSSION

Allylation of Aldehydes. Catalytic asymmetric allylation of aldehydes with allyltributyltin can provide direct, efficient access to potentially useful chiral homoallylic alcohols as important building blocks for the construction of various biologically active compounds. Therefore, there has been intense research activity in this area in recent years, leading to the development of a large and diverse array of chiral ligands attached to metals such as $Ti,^{22}$ In,²³ and Bi.²⁴ Although a lot of achiral pincer complexes, particularly pincer Pd(II) complexes with structural diversity, $3n,25$ [ha](#page-9-0)ve [b](#page-9-0)een su[cce](#page-9-0)ssfully applied in the allylation of aldehydes and exhibited high catalytic activity, the chiral ones in the a[sy](#page-8-0)[mm](#page-9-0)etric allylation have not afforded impressive enantioselectivitities.^{10a,b,26} The highest enantioselectivity was only 62% ee^{26a} when chiral pincer Pd(II) complexes were utilized as the [cataly](#page-8-0)[st](#page-9-0)s for this transformation. Better enantioselectivities w[ere](#page-9-0) obtained with 5 mol % pincer Rh−Phebox catalysts, albeit with a limited substrate scope (eight examples, 35−80% ee).10a,b Moreover, excellent enantioselectivities (up to 99% ee) have been achieved by using methallyltributyltin instead [of all](#page-8-0)yltributyltin as the allyl source.^{10c} It was believed that these $Rh(III)$ complexes acted as traditional Lewis acid catalysts in the above allylation reactions. Overal[l, th](#page-8-0)ere is still much room for improvement in the chiral pincer complex-catalyzed enantioselective allylation of aldehydes with allyltributyltin. Also, literature results revealed that the chiral Rh−Phebox complexes were rather promising in this reaction. Therefore, it seemed to be necessary to investigate the potential of our previously reported structurally very related pincer Rh−Phebim complexes in the asymmetric allylation. The current experiment began with the allylation of benzaldehyde with allyltributyltin in the presence of 5 mol % pincer Rh− Phebim complex at room temperature in CH_2Cl_2 as the model

Table 1. Optimization of Reaction Conditions for the Asymmetric Allylation of Benzaldehyde with Allyltributyltin Using the Pincer Rh−Phebim Complexes 1 as Catalysts^a

	∠СНО	Rh-Phebim complex (2-5 mol%) + \gg Sn(n-Bu) ₃	OH	
	2a	3 (1.5 equiv)	4a	
entry	cat.	solvent	yield $(\%)^b$	ee $(\%)^{c,d}$
	1a	CH_2Cl_2	52	30
$\mathbf{2}$	1 _b	CH_2Cl_2	71	77
3	1c	CH_2Cl_2	41	40
4	1 _d	CH_2Cl_2	46	42
5	1e	CH_2Cl_2	35	45
6	1 ^f	CH_2Cl_2	40	50
7^e	1 _b	CH_2Cl_2	92	90
$8^{e,f}$	1 _b	CH_2Cl_2	83	86
$9^{\epsilon g}$	1 _b	CH_2Cl_2	57	83
10 ^e	1 _b	CHCl ₃	46	77
$11^e\,$	1 _b	ClCH ₂ CH ₂ Cl	91	90
$12^e\,$	1 _b	toluene	67	69
$13^e\,$	$1\mathrm{b}$	THF	41	47

^aReaction conditions: benzaldehyde (0.20 mmol), allyltributyltin (0.30 mmol), cat. 1 (5 mol %), solvent (2 mL), rt, 6 h. ^bIsolated yields.
CDetermined by chiral HPLC ^dThe absolute configuration of the product was as Determined by chiral HPLC. ^dThe absolute configuration of the product was assigned to be S by comparison of optical rotation with that in ref 10a,b. ^eIn the presence of 4 Å molecular sieves (250 mg). ^{*f*}Cat. 1b (4 mol %). ^{*g*}Cat. 1b (2 mol %), 12 h.

Table 2. Asymmetric Allylation of Aldehydes with Allyltributyltin Using the Pincer Rh−Phebim Complex 1b as the Catalyst^a

RCHO	$+$ Sn(n-Bu) ₃ Rh-Phebim complex (5 mol%)		OН	
$2a-x$	3 (1.5 equiv)		4a-x	
Entry	$\mathbf R$	Product	Yield ^b $(\%)$	$ee^{c,d}(%)$
$\overline{1}$	Ph	4a	92	$90(61)^e$
$\sqrt{2}$	$4-O2NC6H4$	4 _b	99	80
\mathfrak{Z}	$3-O_2NC_6H_4$	4c	86	85
$\overline{4}$	$4-CF3C6H4$	4d	99	86
5	$4-CIC6H4$	4e	92	86
$\sqrt{6}$	$2,4-Cl_2C_6H_3$	${\bf 4f}$	97	84
$\boldsymbol{7}$	$4-BrC_6H_4$	4g	95	$88(43)^e$
$\,$ 8 $\,$	$3-BrC_6H_4$	4h	92	90
9	$2-MeOC6H4$	4i	82	93
10	3-MeOC ₆ H ₄	4j	80	92
$11\,$	4-MeOC ₆ H ₄	4k	85	$88(80)^e$
12	$4-MeC6H4$	41	92	97
13	$3-MeC6H4$	4m	80	87
14	$4-NCC_6H_4$	4n	80	$80\,$
15	$4-Me2NC6H4$	40	84	92
16	1-naphthyl	4p	88	94
17	2-naphthyl	4q	90	92
18		4r	82	$90(58)^e$
19		4s	78	93
20		4t	84	95
$21\,$		4 _u	$80\,$	92
22		4v	95	$86(77)^e$
23		4 _w	80	$37(63)^{e,f}$
24	Bn ⁰	4x	80	$85(35)^e$

"Reaction conditions: aldehyde (0.20 mmol), allyltributyltin (0.30 mmol), cat. 1b (5 mol %), CH₂Cl₂ (2 mL), 4 Å molecular sieves (250 mg), rt, 6 h. "Reaction conditions: aldehyde (0.20 mmol), allyltributyltin (0.30 mmol), cat. 1**b** (5 mol %), CH2Cl2 (2 mL), 4 Å molecular sieves (250 mg), rt, 6 h.
^bIsolated yields. 'Determined by chiral HPLC. ^dThe absolute configur with those in ref 10a,b or by analogy. ^eLiterature results from ref 10a,b with Rh–Phebox catalysts are given in parentheses. ^{*f*}The absolute configuration of the product was assigned to be R by comparison of the optical rotation with that in ref 10a,b.

reaction. It was [found](#page-8-0) that complex 1b with the (4S)-benzyl substituent gave the best results among the six Rh−Phebim complexes, producing the [expe](#page-8-0)cted homoallylic alcohol 4a in 71% yield with 77% ee (Table 1, entries 1−6). Gratifyingly,

both the yield and enantioselectivity were significantly improved by the addition of 4 Å molecular sieves (92% yield with 90% ee; entry 7). When the catalyst loading was reduced from 5 mol % to 4 or 2 mol %, a decrease in both the yield and enantioselectivity was observed, although good enantioselectivities could still be obtained (entries 8 and 9). In addition, $CH₂Cl₂$ was found to be the most appropriate solvent for the reaction among the tested solvents, including CH_2Cl_2 , $CHCl_3$, ClCH₂CH₂Cl, toluene, and THF (entry 7 vs entries 10−13).

Under the above optimized reaction conditions, various aldehydes reacted smoothly with allyltributyltin to give the corresponding chiral homoallylic alcohols in high chemical yields and enantioselectivities (Table 2). Both electrondonating and electron-withdrawing groups in the substituted benzaldehydes were tolerated, and [go](#page-2-0)od to excellent enantioselectivities were obtained (80−97% ee; entries 1−15). Roughly, the electron-withdrawing group showed some beneficial effect on the yield of the catalysis product while the electron-donating group was beneficial for the enantioselectivity compared with benzaldehyde. The position of the group on the aryl ring also had some influence on the yield and/or enantioselectivity. For example, the reactions of 2-, 3-, and 4-methoxybenzaldehyde with allyltributyltin afforded the expected adducts in 82, 80, 85% yield, respectively, with 93, 92, and 88% ee, respectively (entries 9−11). For 1- and 2 naphthaldehyde, excellent enantioselectivities were achieved (94 and 92% ee, respectively; entries 16 and 17). Particularly, when heteroaromatic aldehydes such as thiophene- and furan-2 carboxaldehyde were used as substrates, excellent stereocontrol of the alcohol products was always observed (90−95% ee; entries 18−21). These aldehydes are somewhat special since they bear ligating atoms that may deactivate the catalyst. In fact, in the case of pyridine-2-carboxaldehyde, no allylation occurred under the present reaction conditions (data not shown in Table 2). Besides aromatic and heteroaromatic aldehydes, allylations of several aliphatic aldehydes were also examined. It was found [th](#page-2-0)at trans-β-phenylacrolein, which is an enal, afforded high enantioselectivity (86% ee; entry 22), while for 3-phenylpropanal, a rather low enantiomeric excess was obtained (37% ee; entry 23). Nonetheless, the use of α -benzyloxyacetaldehyde as the substrate gave the corresponding chiral homoallylic alcohol with good stereocontrol (85% ee; entry 24). The above results confirm that the Rh−Phebim complexes are highly enantioselective catalysts for the asymmetric allylation of aldehydes with allyltributyltin. It is worth pointing out that in the allylation of six specific aldehydes, the Rh−Phebim complexes invariably provided much better enantioselectivities than the related Rh−Phebox complexes^{10a,b} under similar reaction conditions (entries 1, 7, 11, 18, 22, and 24). Furthermore, to the best of our know[ledg](#page-8-0)e, Rh−Phebim catalysts are the most effective among the pincer catalysts for the studied allylation in regard to the scope of aldehyde substrate and the product enantioselectivity.

Carbonyl−Ene Reaction. The chiral Lewis acid- or Brønsted acid-catalyzed enantioselective carbonyl−ene reaction of trifluoropyruvates, 27 which can construct a tetrasubstituted stereogenic center, continues to receive considerable attention in asymmetric sy[nth](#page-9-0)esis because the obtained α -CF₃substituted optically active homoallylic alcohols are important intermediates for drug molecules. On the basis of the successful application of the Rh−Phebim complexes in the aforementioned asymmetric allylation, where they may act as Lewis acid catalysts similar to the Rh–Phebox complexes,^{10a–c} it was of interest to further explore their performance in the Lewis acidcatalyzed carbonyl−ene reaction. To the best of our knowledge, there is no report on the use of pincer catalysts in this reaction. The addition of 2-phenylpropene to ethyl trifluoropyruvate was selected as the model reaction, and a brief optimization of reaction conditions is summarized in Table 3. No reaction

Table 3. Optimization of the Reaction Conditions for the Asymmetric Carbonyl−Ene Reaction of Ethyl Trifluoropyruvate Using the Pincer Rh−Phebim Complexes 1 as $Catalysts^a$

					액 $C F_3$
		OEt F_3C	Rh-Phebim complex		OOFt
5a		6a			7a
entry	cat.	solvent	additive	yield $(\%)^b$	ee $(\%)^{c,d}$
1	1a	ClCH ₂ CH ₂ Cl		$\mathbf{0}$	
\mathfrak{p}	1a	ClCH ₂ CH ₂ Cl	AgSbF ₆	21	33
3	1 _b	ClCH ₂ CH ₂ Cl	AgSbF ₆	31	8
$\overline{4}$	1 _c	ClCH ₂ CH ₂ Cl	AgSbF ₆	51	0
5	1d	ClCH ₂ CH ₂ Cl	AgSbF ₆	10	$\mathbf{0}$
6	1e	ClCH ₂ CH ₂ Cl	$AgSbF_6$	15	9
7	1 ^f	ClCH ₂ CH ₂ Cl	AgSbF ₆	82	54
8	1 ^f	ClCH ₂ CH ₂ Cl	AgBF ₄	74	39
9	1f	ClCH ₂ CH ₂ Cl	AgOTf	89	93
10 ^e	1 ^f	ClCH ₂ CH ₂ Cl	AgOTf	$<$ 5	$\mathrm{n.d.}^f$
11	1 ^f	ClCH ₂ CH ₂ Cl	Me ₃ SiOTf	$<$ 5	n.d.f
12	1 ^f	CH,Cl,	AgOTf	88	89
13	1 ^f	CHCl ₃	AgOTf	49	53
14	1f	toluene	AgOTf	41	40

a Reaction conditions: ethyl trifluoropyruvate (0.20 mmol), 2-phenylpropene (0.24 mmol), Rh complex 1 (3 mol %), additive (6 mol %), solvent (2 mL) , rt, 16 h. b Isolated yields. CDetermined by chiral $HPLC.$ $\frac{d}{dt}$ The absolute configuration of the product was assigned to be S by comparison of optical rotation with that in ref 27c. ^e3 mol % $AgOTf.$ f Not determined.

occurred in the presence of Rh−Phebim complex [1a](#page-9-0) containing the (4S)-phenyl substituent as the catalyst (entry 1). When 2 equiv of AgSbF₆ relative to complex 1a was added to the reaction mixture to enhance the Lewis acidity of the Rh(III) catalyst, the expected product could be isolated, albeit in rather modest yield and enantioselectivity (21% yield with 33% ee; entry 2). When the other five Rh−Phebim complexes 1b−f were examined in the presence of $AgSbF_6$ (entries 3–7), it was found that both the reactivity and selectivity of the reaction were greatly influenced by the ligand structure of the Rh− Phebim complex. Although complex 1b with the (4S)-benzyl substituent gave the best results in the allylation, it afforded only 8% ee in the carbonyl−ene reaction (entry 3). Pleasingly, complex 1f with the (4S)-tert-butyl substituent provided hopeful results (82% yield with 54% ee; entry 7). Further studies revealed that the anion of the $Ag(I)$ salt played a key role for effective stereocontrol of the reaction (entries 7−9). When AgOTf instead of $AgSbF_6$ was used to abstract the chloride in complex 1f, the enantioselectivity of the reaction was significantly improved to 93% ee (entry 9). It was found that the amount of AgOTf was also crucial for the reaction. With 1 equiv of AgOTf relative to complex 1f, only a trace amount of the expected alcohol product was isolated (<5% yield; entry 10). When the reaction of ethyl trifluoropyruvate with 2-phenylpropene was carried out in the presence of 6 mol

 Ω

% AgOTf without the pincer Rh−Phebim complex, the expected product was not detected after stirring at room temperature in 1,2-dichloroethane (DCE) for 16 h (data not shown in Table 3). In addition, the use of $Me₃SiOTf$ as an additive to activate the neutral pincer Rh−Phebim complex 1f proved to be ineffective (entry 11). Finally, a quick survey of different solvents[,](#page-3-0) [i](#page-3-0)ncluding DCE, CH_2Cl_2 , CHCl₃, and toluene indicated that DCE was the most appropriate solvent (entry 9 vs entries 12−14). Thus, the optimized conditions include using complex 1f in the presence of 2 equiv of AgOTf as the catalyst and DCE as the solvent.

With the optimal conditions established, the scope of the reaction with respect to various alkenes was investigated (Table 4). A broad range of 2-arylpropenes (5a−l) underwent the

Table 4. Substrate Scope for the Catalytic Asymmetric Carbonyl−Ene Reaction of Trifluoropyruvates Using the Pincer Rh–Phebim Complex 1f as the Catalyst^{a}

Ar	F_3C	OR	Rh-Phebim complex	Ar	$O_{\leqslant}^{\mathsf{H}}$ $C F_3$
$5a-$	$6a R = Et$ $6b R = Me$				7a-q
entry	Ar	R	product	yield $(\%)^b$	ee $(\%)^{c,d}$
$\mathbf{1}$	Ph	Et	7a	89	93
$\overline{2}$	4 -Me C_6H_4	Et	7Ь	85	77
3	3 -Me C_6H_4	Et	7c	85	89
$\overline{4}$	4 -EtC ₆ H ₄	Et	7d	87	74
5	$4-tBuC6H4$	Et	7e	87	74
6	4 -FC ₆ H ₄	Et	7f	80	91
7	4 -ClC ₆ H ₄	Et	7g	88	95
8	$3-CIC6H4$	Et	7h	80	94
9	$4-BrC6H4$	Et	7i	85	94
10	$3-BrC6H4$	Et	7j	80	93
11	1-naphthyl	Et	7k	81	75
12	2-naphthyl	Et	71	87	81
13	Ph	Me	7m	82	77
14	4 -ClC ₆ H ₄	Me	7n	81	70
15	$3-CIC6H4$	Me	7 _o	62	65
16	$4-BrC_6H_4$	Me	7p	80	71
17	$3-BrC6H4$	Me	7q	60	74

a Reaction conditions: trifluoropyruvate (0.20 mmol), alkene (0.24 mmol), Rh complex 1f (3 mol %), AgOTf (6 mol %), ClCH₂CH₂Cl (2 mL) , rt, 16 h. b Isolated yields. CDetermined by chiral HPLC. d The absolute configurations of the products were assigned to be S by comparison of optical rotations with those in ref 27c or by analogy.

desired reaction with trifluoropyruvates [to](#page-9-0) provide the corresponding α -hydroxy- α - trifluoromethyl esters (7a–q) in high yields with good to excellent enantioselectivities. In the reaction of ethyl trifluoropyruvate, an evident electronic effect on the enantioselectivy was observed. In comparison with 2 phenylproene (93% ee; entry 1), 2-arylpropenes containing an electron-donating group such as alkyl on the phenyl group provided obviously lower stereoselectivities (74−89% ee; entries 2−5), while those with an electron-withdrawing group such as 4-F, 4-Cl, 4-Br, 3-Cl, or 3-Br on the phenyl ring gave comparable or slightly higher enantioselectivities (91−95% ee; entries 6−10). Similarly, 2-naphthylpropenes, which are more electron-rich than 2-phenylpropene, also afforded lower stereoselectivities (75 and 81% ee; entries 11 and 12). In addition, the asymmetric carbonyl−ene reaction of methyl trifluoropyruvate with several representative alkenes was also studied. Although good results (60−82% yield with 65−77% ee) could still be obtained, the yields and ee values were obviously inferior to those in the corresponding reactions of ethyl trifluoropyruvate (entries 13−17). In these reactions, an electron-withdrawing group on the phenyl ring of the 2 arylpropene had a detrimental effect on the stereoselectivity instead.

In the enantioselective allylation of aldehydes with allyltin reagents catalyzed by pincer Rh−Phebox complexes, a detailed mechanistic study by Nishiyama and coauthors^{10b} revealed that the (Phebox)RhCl₂ fragment generated by release of H_2O from the neutral pincer (Phebox) $RhCl₂(H₂O)$ c[omp](#page-8-0)lex was the catalytically active species. This fragment activates the carbonyl group of the aldehyde through coordination of the carbonyl oxygen to the rhodium center. The allyltin then attacks the activated aldehyde to give the homoallylic alcohol product. Thus, the allylation proceeds via a Lewis acid-catalyzed mechanism. In view of the high structural similarity between Rh−Phebim and Rh−Phebox complexes, it seems to be reasonable to deduce that the neutral (Phebim)RhCl₂(H₂O) complexes 1 also act as traditional Lewis acid catalysts in the allylation. In fact, there is some evidence that the coordinated H_2O molecule in the (Phebim)RhCl₂(H_2O) complex dissociates easily and that the carbonyl compound can coordinate to the Rh(III) center of the (Phebim)RhCl₂ fragment. In our previous studies, crystals of the corresponding acetone- or dichloromethane-coordinated complexes were always obtained when we performed recrystallization in acetone or dichloromethane to get crystals of (Phebim)RhCl₂(H₂O) complexes.²⁰ This phenomenon means that in the allylation the (Phebim)- $RhCl₂(H₂O)$ complex can also release $H₂O$ to give t[he](#page-9-0) (Phebim)RhCl₂ fragment, which can activate the aldehyde just as the (Phebox)RhCl₂ fragment does. In contrast to allylation, the Lewis acid-catalyzed carbonyl−ene reaction of trifluoropyruvate did not occur in the presence of (Phebim)- $RhCl₂(H₂O)$ complexes 1. It seemed that the electrophilicity of the metal center in these neutral complexes was not high enough to activate trifluoropyruvate. Fortunately, the Lewis acidity of the complexes could be enhanced by abstraction of chloride from the Rh(III) center to form the corresponding cationic species. Not unexpectedly, the carbonyl−ene reaction proceeded in the presence of $Ag(I)$ salts, particularly AgOTf. Since 2 equiv of AgOTf relative to Rh−Phebim complex 1 was essential for smooth reaction, an in situ-generated dicationic Rh(III) species, $[(Phebim)Rh(H, O)][OTF]_2$, is considered to be the active catalyst, which can activate trifluoropyruvate through chelate coordination of both carbonyl oxygen atoms to the rhodium center. A catalytic cycle for the carbonyl−ene reaction is proposed in Scheme S1 in the Supporting Information.

■ **[CONCL](#page-8-0)USIONS**

In conclusion, we have shown that chiral NCN pincer Rh− Phebim complexes are highly enantioselective catalysts for the allylation of aldehydes with allyltributyltin, giving the corresponding catalysis products in high yields with enantioselectivities of up to 97% ee. The current process tolerates a range of aldehyde substrates under mild conditions, and the Rh−Phebim catalysts were found to be much superior to the closely related Rh−Phebox catalysts with respect to substrate scope and enantioselectivity. In addition, in the presence of AgOTf, the aforementioned Rh−Phebim complexes gave

effective catalysts with high stereoselectivities (up to 95% ee) for the asymmetric carbonyl−ene reaction of trifluoropyruvates with 2-arylpropenes, a reaction which was catalyzed for the first time by pincer metal complexes. The scope of the alkene substrates are relatively broad. Further experiments to study the applications of the Rh−Phebim catalysts to other reactions are in progress.

EXPERIMENTAL SECTION

General. Solvents were dried with standard methods and freshly distilled prior to use if needed. The 2-arylpropenes were synthesized according to the literature methods.²⁸ All other chemicals were used as purchased. NMR spectra were recorded with $CDCl₃$ as the solvent and TMS as an internal standard. HR[MS](#page-9-0) data were acquired on a Q-Tof Micro MS/MS ESI mass spectrometer.

Synthesis of the NCN Pincer (Phebim)RhCl₂(H₂O) Complexes 1a−f. The ligands and the corresponding NCN pincer (Phebim)- RhCl₂(H₂O) complexes 1a−f were prepared according to the procedure reported previously by us.²⁰ The analytical data of the new complex 1f is given in the next paragraph.

(2,6-Bis((S)-4-tert-butyl-1-p-tolyl-4[,5-](#page-9-0)dihydro-1H-imidazol-2-yl) phenyl)RhCl₂(H₂O) (1f). Yellow solid (149.9 mg, 43%); mp 180−182 °C. $[\alpha]_D^{20}$ = +885 (c 0.156, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.6 Hz, 4H, ArH), 7.20 (d, J = 8.4 Hz, 4H, ArH), 6.63 (dd, J = 6.7, 8.7 Hz, 1H, ArH), 6.56−6.54 (m, 2H, ArH), 4.29 (app t, J = 11.8 Hz, 2H, NCH), 4.18 (dd, J = 9.2, 10.8 Hz, 2H, NCHH), 3.82 (dd, $J = 9.2, 12.6$ Hz, 2H, NCHH), 2.40 (s, 6H, CH₃), 1.62 (br s, 2H, OH₂), 1.32 (s, 18H, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 138.4, 137.9, 134.8, 130.3, 128.2, 126.3, 121.8, 72.1, 56.9, 33.7, 26.9, 21.2. Anal. Found: C, 58.09; H, 6.01; N, 7.91. Calcd for $C_{34}H_{43}Cl_2N_4ORh$: C, 58.54; H, 6.21; N, 8.03.

General Procedure for the Asymmetric Allylation of Aldehydes with Allyltributyltin by the NCN Pincer (Phebim)- $RhCl₂(H₂O)$ Complexes 1. Under an argon atmosphere, to a suspension of 4 Å molecular sieves (250 mg) in CH_2Cl_2 (2 mL) was added the NCN pincer (Phebim)RhCl₂(H₂O) complex 1 (0.01 mmol, 5.0 mol %), aldehyde (0.20 mmol), and allyltributyltin (0.30 mmol, 93.0 μ L) at room temperature. After the resulting solution mixture was stirred at that temperature for 6 h, the residue was purified by preparative TLC on silica gel plates eluting with CH_2Cl_2 to afford the homoallylic alcohol.

(S)-1-Phenylbut-3-en-1-ol (4a).^{10a,b,22–24,29,30} Pale-yellow oil (27.2 mg, 92%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hex[ane/2](#page-8-0)[-p](#page-9-0)r[opanol](#page-9-0) = $100/5$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 15.3 min, 17.5 min (major), 90% ee. $[\alpha]_D^{20} = -52.0$ (c 0.840, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.25 (m, 5H), 5.85– 5.75 (m, 1H), 5.18−5.12 (m, 2H), 4.72 (dd, J = 5.5, 7.4 Hz, 1H), 2.55−2.46 (m, 2H), 2.17 (br s, 1H, OH).

(S)-1-(4-Nitrophenyl)but-3-en-1-ol (4b).^{22b,29,31a} Pale-yellow oil (38.3 mg, 99%). The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = $98/2$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 48.9 min, 52.5 min (major), 80% ee. $[\alpha]_D^{20} = -45.5$ (c 1.000, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 5.84−5.74 (m, 1H), 5.20−5.15 (m, 2H), 4.86

(dd, J = 4.7, 7.9 Hz, 1H), 2.59–2.53 (m, 1H), 2.50–2.42 (m, 2H).
(S)-1-(3-Nitrophenyl)but-3-en-1-ol (**4c**).^{29,31a} Pale-yellow oil (33.2 mg, 86%). The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with hexane/2-pr[opano](#page-9-0)l = $98/2$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 41.8 min, 46.0 min (major), 85% ee. $[\alpha]_D^{20} = -48.2$ (c 0.388, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.24 (t, J = 1.8 Hz, 1H), 8.14−8.12 (m, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 5.85−5.75 (m, 1H), 5.22−5.17 (m, 2H), 4.87 (dd, J = 4.8, 7.8 Hz, 1H), 2.61−2.44 (m, 2H), 2.37 (br s, 1H, OH).

(S)-1-(4-(Trifluoromethyl)phenyl)but-3-en-1-ol $(4d)$.^{30,31b} Pale-yellow oil (42.8 mg, 99%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2-propano[l = 99](#page-9-0)/1, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 15.6 min (major), 16.9 min, 86% ee. $\left[\alpha \right]_{D}^{20} = -45.3$ (c 0.524, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 5.83−5.73 (m, 1H), 5.19−5.15 (m, 2H), 4.78 (dd, J = 4.9, 7.8 Hz, 1H), 2.56−2.41 (m, 2H), 2.29 (br s, 1H, OH).

(S)-1-(4-Chlorophenyl)but-3-en-1-ol $(4e).^{23,24,30,31a,b}$ Pale-yellow oil (33.6 mg, 92%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2[-propanol =](#page-9-0) 100/2, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 29.1 min (major), 31.5 min, 86% ee. $\left[\alpha \right]_{D}^{20} = -43.6$ (c 0.520, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.26 (m, 4H), 5.82−5.72 (m, 1H), 5.17−5.13 (m, 2H), 4.70 (dd, J = 5.2, 7.6 Hz, 1H), 2.53−2.40 (m, 2H), 2.19 (br s, 1H, OH).

(S)-1-(2,4-Dichlorophenyl)but-3-en-1-ol $(4f).$ ³² Pale-yellow oil (42.1 mg, 97%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2-propanol = $99/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 11.8 min, 13.7 min (major), 84% ee. $\lbrack \alpha \rbrack_{D}^{20} = -81.9$ (c 0.764, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 2.1 Hz, 1H), 7.26 (dd, J = 2.0, 8.4 Hz, 1H), 5.88−5.78 (m, 1H), 5.19−5.15 (m, 2H), 5.08 (dd, J = 3.5, 8.0 Hz, 1H), 2.62−2.56 (m, 1H), 2.36−2.29 (m, 2H).

(S)-1-(4-Bromophenyl)but-3-en-1-ol $(4g)$.^{10a,b,29} Pale-yellow oil (43.1 mg, 95%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2-propa[nol =](#page-8-0) $100/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 31.3 min (major), 34.9 min, 88% ee. $[\alpha]_D^{20} = -42.5$ (c 0.720, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 5.81−5.71 (m, 1H), 5.17−5.12 (m, 2H), 4.67 (dd, J = 5.3, 7.5 Hz, 1H), 2.52–2.39 (m, 2H), 2.26 (br s, 1H, OH).
(S)-1-(3-Bromophenyl)but-3-en-1-ol (**4h**).³³ Pale-yellow oil (41.8)

mg, 92%). The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with hex[an](#page-9-0)e/2-propanol = $99/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 24.9 min, 26.9 min (major), 90% ee. $[\alpha]_D^{20} = -39.5$ (c 0.626, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (s, 1H), 7.41–7.39 (m, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 5.84−5.73 (m, 1H), 5.19−5.15 (m, 2H), 4.71−4.68 (m, 1H), 2.55−2.41 (m, 2H), 2.16 (br s, 1H, OH).

(S)-1-(2-Methoxyphenyl)but-3-en-1-ol $(4i)$.^{24,30} Pale-yellow oil (29.2 mg, 82%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hexane/2-propan[ol = 9](#page-9-0)9.5/0.5, flow rate $= 1.0$ mL/min, and detection at a UV wavelength of 220 nm. Retention times: 24.9 min (major), 29.4 min, 93% ee. $[\alpha]_D^{20} = -51.2$ (c 0.364, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.33 (dd, J = 1.5, 7.5 Hz, 1H), 7.27−7.22 (m, 1H), 6.98−6.94 (m, 1H), 6.88 (d, J = 8.2 Hz, 1H), 5.90−5.80 (m, 1H), 5.16−5.09 (m, 2H), 4.96 (t, J = 3.7 Hz, 1H), 3.85 (s, 3H, OCH3), 2.62−2.47 (m, 3H).

(S)-1-(3-Methoxyphenyl)but-3-en-1-ol (4j).^{30,31a,b} Pale-yellow oil (28.5 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2-propanol = $99.5/0.5$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 42.6 min (major), 46.9 min, 92% ee. $[\alpha]_D^{20} = -48.0$ (c 0.340, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.28–7.24 (m, 1H), 6.94−6.93 (m, 2H), 6.83−6.80 (m, 1H), 5.87−5.76 (m, 1H), 5.19− 5.13 (m, 2H), 4.72 (t, J = 6.2 Hz, 1H), 3.82 (s, 3H, OCH3), 2.57−2.45 (m, 2H), 2.07 (br s, 1H, OH).

(S)-1-(4-Methoxyphenyl)but-3-en-1-ol (4k).^{10a,b,24,30,31a,b} Pale-yellow oil (30.3 mg, 85%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hexane/2[-prop](#page-8-0)[anol =](#page-9-0) [90](#page-9-0)/3, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 28.1 min, 30.6 min (major), 88% ee. $\lbrack \alpha \rbrack_{\rm D}^{20} = -49.8$ (c 0.550, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 5.85−5.74 (m, 1H), 5.17−5.11 (m, 2H), 4.69 (t, J = 6.5 Hz, 1H), 3.80 (s, 3H, OCH₃), 2.49 (t, J = 6.8 Hz, 2H), 2.04 (br s, 1H, OH).

(S)-1-(4-Methylphenyl)but-3-en-1-ol (4I).^{23b,24,29,30,31a} Pale-yellow oil (29.9 mg, 92%). The enantiomeric excess was determined on a Daicel Chiralcel OB-H column with hexane[/2-propanol =](#page-9-0) 99/1, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 27.1 min (major), 35.5 min, 97% ee. $\left[\alpha \right]_{D}^{20} = -59.6$ (c 0.826, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 5.84−5.74 (m, 1H), 5.17−5.10 (m, 2H), 4.68 (t, J = 6.5 Hz, 1H), 2.51–2.47 (m, 2H), 2.34 (s, 3H, CH₃), 2.10 (br s, 1H, OH).

(S)-1-(3-Methylphenyl)but-3-en-1-ol $(4m)$.^{29,31b} Pale-yellow oil (25.9 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $99/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 18.7 min, 19.7 min (major), 87% ee. $[\alpha]_D^{20} = -48.0$ (c 0.100, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.23 (t, J = 7.2 Hz, 1H), 7.15 (t, J = 8.7 Hz, 2H), 7.09 (d, J = 7.4 Hz, 1H), 5.86−5.76 (m, 1H), 5.19−5.13 (m, 2H), 4.70 (dd, J = 5.3, 7.6 Hz, 1H), 2.56−2.44 (m, 2H), 2.36 (s, 3H, CH3), 2.03 (br s, 1H, OH).

(S)-1-(4-Cyanophenyl)but-3-en-1-ol $(4n)$.^{30,31c} Pale-yellow oil (27.7 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with hexane/2-propa[nol =](#page-9-0) $98/2$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 46.7 min, 48.9 min (major), 80% ee. $[\alpha]_D^{20} = -59.7$ (c 0.378, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 5.82−5.72 (m, 1H), 5.19−5.14 (m, 2H), 4.80 (dd, J = 4.7, 7.9 Hz, 1H), 2.57−2.40 (m, 2H), 2.37 (br s, 1H, OH).

 $(S)-1-(4-(Dimethylamino)phenyl)$ but-3-en-1-ol (4o).³⁴ Pale-yellow oil (32.2 mg, 84%). The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with hexane/2-propa[nol](#page-9-0) = 100/0.5, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 104.8 min (major), 115.6 min, 92% ee. $[\alpha]_D^{20} = -61.0$ (c 0.112, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, J = 8.7) Hz, 2H), 6.72 (d, J = 8.8 Hz, 2H), 5.87−5.76 (m, 1H), 5.18−5.10 (m, 2H), 4.64 (t, J = 6.3 Hz, 1H), 2.94 (s, 6H, CH₃), 2.53–2.49 (m, 2H).
(S)-1-(Naphthalen-1-yl)but-3-en-1-ol (**4p**).^{23b,24,31a} Pale-yellow oil)

(34.9 mg, 88%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $95/5$, flow rate = 0.8 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 15.1 min (major), 18.7 min, 94% ee. $[\alpha]_D^{20} = -90.9$ (c 0.492, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 7.4 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 7.1 Hz, 1H), 7.52−7.45 (m, 3H), 5.97−5.86 (m, 1H), 5.51 (dd, J = 4.0, 8.3 Hz, 1H), 5.23−5.16 (m, 2H), 2.78−2.72 (m, 1H), 2.63−2.55 (m, 1H), 2.24 (br s, 1H, OH).

(S)-1-(Naphthalen-2-yl)but-3-en-1-ol $(4q)$.^{23,24,31a,b} Pale-yellow oil (35.7 mg, 90%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $95/5$, flow rate = 0.8 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 17.9 min (major), 21.0 min, 92% ee. $[\alpha]_D^{20} = -57.9$ (c 0.550, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.82–7.78 (m, 4H), 7.49– 7.43 (m, 3H), 5.86−5.76 (m, 1H), 5.19−5.12 (m, 2H), 4.87 (dd, J =

5.6, 7.2 Hz, 1H), 2.62–2.52 (m, 2H), 2.25 (br s, 1H, OH).
(S)-1-(Furan-2-yl)but-3-en-1-ol (4r).^{10a,b,31b} Pale-yellow oil (22.6 mg, 82%). The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with hexane/2[-prop](#page-8-0)[ano](#page-9-0)l = $99.5/0.5$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 70.6 min (major), 77.7 min, 90% ee. $[\alpha]_D^{20} = -14.0$ (c 0.100, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 0.9 Hz, 1H), 6.33 (dd, J = 1.9, 3.0 Hz, 1H), 6.25 (d, J = 3.2 Hz, 1H), 5.86− 5.76 (m, 1H), 5.17 (t, J = 11.2 Hz, 2H), 4.75 (t, J = 6.4 Hz, 1H), 2.68– 2.57 (m, 2H), 2.11 (br s, 1H, OH).

(S)-1-(5-Methylfuran-2-yl)but-3-en-1-ol $(4s).^{23a}$ Pale-yellow oil (23.7 mg, 78%). The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = $300/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 55.1 min (major), 64.4 min, 93% ee. $[\alpha]_D^{20} = -25.0$ (c 0.226, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 6.12 (d, J = 3.0 Hz, 1H), 5.90 (dd, J = 0.9, 3.0 Hz, 1H), 5.87−5.77 (m, 1H), 5.21−5.13 (m, 2H), 4.68 (t, J = 6.6 Hz, 1H), 2.63–2.59 (m, 2H), 2.28 (s, 3H, CH₃), 2.04 (br s, 1H, OH).

(S)-1-(Thiophen-2-yl)but-3-en-1-ol $(4t)$.^{24,31a,b} Pale-yellow oil (25.9 mg, 84%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2-propanol = $100/5$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 20.2 min (major), 23.0 min, 95% ee. $[\alpha]_D^{20} = -31.0$ (c 0.280, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.25 (dd, J = 1.6, 4.8 Hz, 1H), 6.99−6.96 (m, 2H), 5.88−5.78 (m, 1H), 5.22−5.15 (m, 2H), 4.98 (t, J = 6.4 Hz, 1H), 2.64–2.60 (m, 2H), 2.24 (br s, 1H, OH).

(S)-1-(5-Methylthiophen-2-yl)but-3-en-1-ol (4u). Pale-yellow oil (26.9 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2-propanol = $100/2$, flow rate = 0.8 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 19.3 min (major), 21.0 min, 92% ee. $[\alpha]_D^{20} = -21.1$ (c 0.408, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 6.75 (d, J = 3.4 Hz, 1H), 6.59 (dd, J = 0.9, 3.3 Hz, 1H), 5.88−5.77 (m, 1H), 5.20−5.13 (m, 2H), 4.87 (t, J = 6.4 Hz, 1H), 2.60–2.57 (m, 2H), 2.46 (s, 3H, CH₃), 2.18 (br s, 1H, OH). ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 139.3, 134.0, 124.6, 123.8, 118.6, 69.5, 43.6, 15.4. HRMS (positive ESI): [M + H]⁺ calcd for C₉H₁₃OS: 169.0687. Found: 169.0684.

(S)-(E)-1-Phenyl-1,5-hexadien-3-ol $(4v)$.^{10a,b,31a} Pale-yellow oil (33.1 mg, 95%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hexane/2-prop[anol](#page-8-0) = $90/10$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 14.6 min, 20.3 min (major), 86% ee. $[\alpha]_D^{20} = -20.7$ (c 0.760, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.37 (m, 2H), 7.33– 7.29 (m, 2H), 7.25−7.21 (m, 1H), 6.60 (d, J = 15.9 Hz, 1H), 6.23 (dd, J = 6.3, 15.9 Hz, 1H), 5.91−5.80 (m, 1H), 5.20−5.15 (m, 2H), 4.38− 4.33 (m, 1H), 2.47–2.34 (m, 2H), 1.90 (br s, 1H, OH).
(R)-1-Phenyl-5-hexen-3-ol (4w).^{10a,b,31a} Pale-yellow oil (28.2 mg,

80%). The enantiomeric excess was determined on a Daicel Chiralcel OD-H column with hexane/2-prop[anol](#page-8-0) = $90/10$, flow rate = 0.5 mL/ min, and detection at a UV wavelength of 254 nm. Retention times: 15.0 min (major), 20.0 min, 37% ee. $\left[\alpha\right]_{\text{D}}^{20} = +14.6$ (c 0.506, CH₂Cl₂).
¹H NMR (400 MHz, CDCl): δ 7.30–7.24 (m, 2H), 7.21–7.16 (m, ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.24 (m, 2H), 7.21–7.16 (m, 3H), 5.87−5.76 (m, 1H), 5.16−5.12 (m, 2H), 3.70−3.64 (m, 1H), 2.84−2.77 (m, 1H), 2.72−2.64 (m, 1H), 2.35−2.29 (m, 1H), 2.22− 2.14 (m, 1H), 1.81–1.75 (m, 2H), 1.74 (br s, 1H, OH).
(S)-1-Benzyloxy-4-penten-2-ol (4x).^{10b,31d} Pale-yellow oil (30.7

mg, 80%). The enantiomeric excess was determined on a Daicel Chiralcel OB-H column with hexane/2-[pro](#page-8-0)[pan](#page-9-0)ol = $90/10$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 21.3 min (major), 24.9 min, 85% ee. $[\alpha]_{D}^{20} = +3.7$ (c 0.920, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.24 (m, 5H), 5.87– 5.76 (m, 1H), 5.13−5.07 (m, 2H), 4.54 (s, 2H), 3.86 (s, 1H), 3.50 $(dd, J = 3.4, 9.5 Hz, 1H), 3.37 (dd, J = 7.4, 9.5 Hz, 1H), 2.49 (br s, 1H,$ OH), 2.25 (t, $J = 6.7$ Hz, 2H).

General Procedure for the Asymmetric Catalytic Carbonyl− Ene Reaction by the NCN Pincer (Phebim)RhCl₂(H₂O) Complexes 1. Under an argon atmosphere, the NCN Pincer (Phebim)- $RhCl₂(H₂O)$ complex 1 (0.006 mmol, 3.0 mol %) was dissolved in 2 mL of ClCH₂CH₂Cl, and AgOTf (0.012 mmol, 6.0 mol %) was added. The resulting mixture was stirred at room temperature for 10 min. Ethyl trifluoropyruvate or methyl trifluoropyruvate (0.20 mmol) was added, followed by alkene (0.24 mmol), and then the resulting solution mixture was stirred at room temperature for 16 h. The residue was purified by preparative TLC on silica gel plates eluted with $CH₂Cl₂/petroleum$ ether to afford the desired product.

(S)-Ethyl 2-Hydroxy-4-phenyl-2-(trifluoromethyl)pent-4-enoate $(7a)^{27c}$ Colorless oil (51.3 mg, 89%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2 prop[ano](#page-9-0)l = $100/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 12.9 min (major), 17.6 min, 93% ee. $[\alpha]_{\text{D}}^{20}$ = -60.3 (c 0.992, CH₂Cl₂). ¹H NMR (400 MHz, CDCl3): δ 7.34−7.26 (m, 5H), 5.39 (s, 1H), 5.28 (s, 1H), 4.07−3.99 (m, 1H), 3.78 (s, 1H), 3.67−3.58 (m, 1H), 3.28 (d, J = 14.0 Hz, 1H), 3.03 (d, $J = 14.0$ Hz, 1H), 1.11 (t, $J = 7.2$ Hz, 3H).

(S)-Ethyl 2-Hydroxy-4-(p-tolyl)-2-(trifluoromethyl)pent-4-enoate $(7b)$.^{27c} Colorless oil (51.4 mg, 85%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2 prop[ano](#page-9-0)l = $100/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 11.3 min (major), 15.2 min, 77% ee. $[\alpha]_{\text{D}}^{20}$ = -20.1 (c 0.996, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 5.35 (s, 1H), 5.22 (s, 1H), 4.09−4.01 (m, 1H), 3.76 (s, 1H), 3.72−3.64 (m, 1H), 3.25 (d, J = 14.0 Hz, 1H), 3.02 (d, J = 14.0 Hz, 1H), 2.33 (s, 3H), 1.13 (t, $J = 7.1$ Hz, 3H).

(S)-Ethyl 2-Hydroxy-4-(m-tolyl)-2-(trifluoromethyl)pent-4-enoate $(7c)^{27a,d}$ Colorless oil (51.3 mg, 85%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2 pro[panol](#page-9-0) = $100/1$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 9.6 min, 11.1 min (major), 89% ee. $[\alpha]_{\text{D}}^{20}$ = -69.7 (c 0.690, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.19 (t, J = 7.5 Hz, 1H), 7.13–7.07 (m, 3H), 5.36 (s, 1H), 5.25 (s, 1H), 4.07−3.99 (m, 1H), 3.78 (s, 1H), 3.68−3.60 (m, 1H), 3.27 (d, J = 14.0 Hz, 1H), 3.01 (d, J = 14.0 Hz, 1H), 2.35 (s, 3H), 1.11 $(t, J = 7.2 \text{ Hz}, 3H).$

(S)-Ethyl 4-(4-Ethylphenyl)-2-hydroxy-2-(trifluoromethyl)pent-4 enoate $(7d)$.^{27a,d} Colorless oil (55.0 mg, 87%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2-pr[opano](#page-9-0)l = $300/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 6.9 min, 7.4 min (major), 74% ee. $[\alpha]_D^{20} = -95.3$ (c 0.770, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.25 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 5.36 (s, 1H), 5.23 (s, 1H), 4.06−3.98 (m, 1H), 3.78 (s, 1H), 3.66− 3.58 (m, 1H), 3.26 (d, $J = 14.0$ Hz, 1H), 3.01 (d, $J = 14.0$ Hz, 1H), 2.63 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H)

(S)-Ethyl 4-(4-(tert-Butyl)phenyl)-2-hydroxy-2-(trifluoromethyl) pent-4-enoate $(7e)^{27a,d}$ Colorless oil (59.9 mg, 87%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2[-prop](#page-9-0)anol = $300/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 10.1 min, 12.8 min (major), 74% ee. $\left[\alpha\right]_D^{20} = -59.0$ (c 0.927, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 5.37 (s, 1H), 5.24 (s, 1H), 4.02−3.94 (m, 1H), 3.80 (s, 1H), 3.57−3.49 (m, 1H), 3.27 (d, J = 13.9 Hz, 1H), 3.00 (d, J = 13.8 Hz, 1H), 1.30 (s, 9H), 1.07 (t, $J = 7.2$ Hz, 3H).

(S)-Ethyl 4-(4-Fluorophenyl)-2-hydroxy-2-(trifluoromethyl)pent-4-enoate $(7f)$.^{27c} Colorless oil (49.0 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2-prop[ano](#page-9-0)l = $100/1$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 18.2 min (major), 19.7 min, 91% ee. $\left[\alpha \right]_{\text{D}}^{20}$ = -71.1 (c 0.604, CH₂Cl₂). ¹H NMR (400 MHz, CDCl3): δ 7.32−7.28 (m, 2H), 7.02−6.98 (m, 2H), 5.34 (s, 1H), 5.25 (s, 1H), 4.13−4.05 (m, 1H), 3.79−3.71 (m, 1H), 3.77 (s, 1H), 3.23 (d, $J = 14.1$ Hz, 1H), 3.02 (d, $J = 14.0$ Hz, 1H), 1.16 (t, $J = 7.2$ Hz, 3H). (S)-Ethyl 4-(4-Chlorophenyl)-2-hydroxy-2-(trifluoromethyl)pent-4-enoate $(7g)^{27c}$ Colorless oil (56.8 mg, 88%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2-prop[ano](#page-9-0)l = $100/1$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 12.5 min, 14.2 min (major), 95% ee. $[\alpha]_D^{20} = -65.0$ (c 0.824, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.30−7.25 (m, 4H), 5.38 (s, 1H), 5.28 (s, 1H), 4.15− 4.07 (m, 1H), 3.82−3.74 (m, 1H), 3.77 (s, 1H), 3.21 (d, J = 14.1 Hz, 1H), 3.03 (d, $J = 14.1$ Hz, 1H), 1.16 (t, $J = 7.2$ Hz, 3H).

(S)-Ethyl 4-(3-Chlorophenyl)-2-hydroxy-2-(trifluoromethyl)pent-4-enoate $(7h)$.^{27c} Colorless oil (51.6 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2-prop[ano](#page-9-0)l = $100/1$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 11.3 min, 13.8 min (major), 94% ee. $[\alpha]_D^{20} = -19.2$ (c 0.476, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.31 (m, 1H), 7.26–7.20 (m, 3H), 5.40 (s, 1H), 5.32 (s, 1H), 4.15−4.07 (m, 1H), 3.80−3.72 (m, 1H), 3.78 (s, 1H), 3.23 (d, J = 14.1 Hz, 1H), 3.02 (d, J = 14.1 Hz, 1H), 1.17 (t, J = 7.2 Hz, 3H).

(S)-Ethyl 4-(4-Bromophenyl)-2-hydroxy-2-(trifluoromethyl)pent-4-enoate $(7i)$.^{27c} Colorless oil (62.4 mg, 85%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2-prop[ano](#page-9-0)l = $100/1$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 13.4 min, 15.0 min (major), 94% ee. $[\alpha]_D^{20} = -47.8$ (c 1.000, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 5.38 (s, 1H), 5.28 (s, 1H), 4.15−4.07 (m, 1H), 3.83−3.73 (m, 1H),

 3.76 (s, 1H), 3.21 (d, $J = 14.1$ Hz, 1H), 3.03 (d, $J = 14.0$ Hz, 1H), 1.17 $(t, J = 7.2$ Hz, 3H).

(S)-Ethyl 4-(3-Bromophenyl)-2-hydroxy-2-(trifluoromethyl)pent-4-enoate (7j). Colorless oil (58.7 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2 propanol = $100/1$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 12.0 min, 14.8 min (major), 93% ee. $[\alpha]_{\text{D}}^{20}$ = –78.9 (c 0.528, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.46 (t, J = 1.7 Hz, 1H), 7.42–7.39 (m, 1H), 7.27–7.25 (m, 1H), 7.18 (t, J = 7.8 Hz, 1H), 5.39 (s, 1H), 5.31 (s, 1H), 4.15−4.07 $(m, 1H)$, 3.80−3.72 $(m, 1H)$, 3.78 $(s, 1H)$, 3.22 $(d, J = 14.1 \text{ Hz}, 1H)$, 3.01 (d, J = 14.0 Hz, 1H), 1.17 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl₃): δ 168.9, 143.2, 139.9, 130.7, 129.8, 129.7, 125.6, 123.3 $(q, J_{C-F} = 285 \text{ Hz})$, 122.3, 120.6, 77.2 $(q, J_{C-F} = 29 \text{ Hz})$, 63.7, 36.8, 13.6. ¹⁹F NMR (376 MHz, CDCl₃): δ –78.5. HRMS (positive ESI): $[M + Na]^{+}$ calcd for $C_{14}H_{14}O_{3}F_{3}BrNa$: 388.9976. Found: 388.9964.

(S)-Ethyl 2-Hydroxy-4-(naphthalen-1-yl)-2-(trifluoromethyl)pent-4-enoate (7k). Colorless oil (54.8 mg, 81%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2 propanol = $100/1$, flow rate = 1.2 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 4.9 min, 5.6 min (major), 75% ee. $[\alpha]_{\text{D}}^{20}$ = -76.8 (c 0.718, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.85−7.75 (m, 4H), 7.51−7.45 (m, 3H), 5.52 (s, 1H), 5.38 (s, 1H), 3.97−3.89 (m, 1H), 3.80 (s, 1H), 3.55−3.46 (m, 1H), 3.40 (d, $J = 14.0$ Hz, 1H), 3.14 (d, $J = 14.0$ Hz, 1H), 1.00 (t, $J = 7.2$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 140.5, 139.4, 133.6, 131.0, 128.4, 127.9, 126.1, 126.0, 125.8, 125.5, 125.1, 123.4 (q, J_{C−F} = 285 Hz), 122.6, 76.7 (q, $J_{\text{C-F}} = 28$ Hz), 63.4, 39.3, 13.1. ¹⁹F NMR (376 MHz, CDCl₃): δ -78.9. HRMS (positive ESI): [M + Na]⁺ calcd for $C_{18}H_{17}O_3F_3Na$: 361.1027. Found: 361.1027.

(S)-Ethyl 2-Hydroxy-4-(naphthalen-2-yl)-2-(trifluoromethyl)pent-4-enoate $(7I)$.^{27a,d} Colorless oil (58.9 mg, 87%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2-pro[panol](#page-9-0) = $100/1$, flow rate = 0.5 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 13.7 min, 15.6 min (major), 81% ee. $[\alpha]_D^{20} = -59.1$ (c 0.770, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.76 (m, 4H), 7.48–7.42 (m, 3H), 5.52 (s, 1H), 5.37 (s, 1H), 3.96−3.88 (m, 1H), 3.81 (s, 1H), 3.54−3.46 (m, 1H), 3.40 (d, $J = 14.0$ Hz, 1H), 3.14 (d, $J = 14.0$ Hz, 1H), 0.99 (t, $J =$ 7.2 Hz, 3H).

(S)-Methyl 2-Hydroxy-4-phenyl-2-(trifluoromethyl)pent-4-enoate $(7m)^{270}$ Colorless oil (45.0 mg, 82%). The enantiomeric excess was determined on a Daicel Chiralcel OJ-H column with hexane/2 prop[ano](#page-9-0)l = $100/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 220 nm. Retention times: 14.9 min (major), 16.8 min, 77% ee. $[\alpha]_{\text{D}}^{20}$ = -86.3 (c 0.488, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.25 (m, 5H), 5.39 (s, 1H), 5.27 (s, 1H), 3.76 (s, 1H), 3.37 (s, 3H), 3.29 (d, J = 13.9 Hz, 1H), 3.02 (d, J = 14.0 Hz, 1H).

(S)-Methyl 4-(4-Chlorophenyl)-2-hydroxy-2-(trifluoromethyl) pent-4-enoate $(7n)^{27b}$ Colorless oil (50.0 mg, 81%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2[-pro](#page-9-0)panol = $300/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 13.3 min, 14.9 min (major), 70% ee. $\left[\alpha\right]_D^{20} = -14.4$ (c 0.458, CH₂Cl₂). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3): \delta 7.30 - 7.25 \text{ (m, 4H)}, 5.38 \text{ (s, 1H)}, 5.27 \text{ (s, 1H)},$ 3.73 (s, 1H), 3.49 (s, 3H), 3.23 (d, $J = 14.0$ Hz, 1H), 3.02 (d, $J = 14.0$ Hz, 1H).

(S)-Methyl 4-(3-Chlorophenyl)-2-hydroxy-2-(trifluoromethyl) pent-4-enoate (7o). Colorless oil (38.3 mg, 62%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2-propanol = $300/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 10.6 min, 13.8 min (major), 65% ee. $[\alpha]_D^{20} = -80.6$ (c 0.428, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.30 (m, 1H), 7.26–7.25 (m, 2H), 7.23–7.19 (m, 1H), 5.41 (s, 1H), 5.30 (s, 1H), 3.74 (s, 1H), 3.51 (s, 3H), 3.24 $(d, J = 14.0 \text{ Hz}, 1H)$, 3.01 $(d, J = 14.0 \text{ Hz}, 1H)$. ¹³C NMR (100 MHz, CDCl3): δ 169.4, 142.7, 139.9, 134.1, 129.5, 127.8, 126.8, 125.1, 123.2 $(q, J_{C-F} = 285 Hz)$, 120.6, 77.2 (q, $J_{C-F} = 29 Hz$), 53.7, 37.1. ¹⁹F NMR (376 MHz, CDCl₃): δ –78.4. HRMS (positive ESI): [M + Na]⁺ calcd for C₁₃H₁₂O₃F₃ClNa: 331.0325. Found: 331.0321.

(S)-Methyl 4-(4-Bromophenyl)-2-hydroxy-2-(trifluoromethyl) pent-4-enoate $(7p)^{27b}$ Colorless oil (56.5 mg, 80%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2[-pro](#page-9-0)panol = $300/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 15.0 min, 16.5 min (major), 71% ee. $\left[\alpha \right] _{\mathrm{D}}^{20} = -115.6$ (c 0.463, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.6 Hz, 2H), 7.20 (d, J = 8.6 Hz, 2H), 5.39 (s, 1H), 5.27 (s, 1H), 3.73 (s, 1H), 3.50 (s, 3H), 3.22 (d, J = 14.0 Hz, 1H), 3.02 (d, $J = 14.0$ Hz, 1H).

(S)-Methyl 4-(3-Bromophenyl)-2-hydroxy-2-(trifluoromethyl) pent-4-enoate (7q). Colorless oil (42.4 mg, 60%). The enantiomeric excess was determined on a Daicel Chiralpak AS-H column with hexane/2-propanol = $300/1$, flow rate = 1.0 mL/min, and detection at a UV wavelength of 254 nm. Retention times: 11.5 min, 14.9 min (major), 74% ee. $[\alpha]_D^{20} = -68.7$ (c 0.440, CH_2Cl_2). ¹H NMR (400 MHz, CDCl₃): δ 7.46 (t, J = 1.8 Hz, 1H), 7.42–7.39 (m, 1H), 7.27– 7.24 (m, 1H), 7.19 (t, J = 7.8 Hz, 1H), 5.40 (s, 1H), 5.30 (s, 1H), 3.75 $(s, 1H)$, 3.51 $(s, 3H)$, 3.23 $(d, J = 14.1 \text{ Hz}, 1H)$, 3.01 $(d, J = 14.0 \text{ Hz},$ 1H). ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 142.9, 139.8, 130.7, 129.8, 129.7, 125.5, 123.2 (q_t J_{C−F} = 285 Hz), 122.3, 120.7, 77.1 (q, $J_{\text{C-F}}$ = 29 Hz), 53.7, 37.1. ¹⁹F NMR (376 MHz, CDCl₃): δ −78.4. HRMS (positive ESI): $[M + Na]^+$ calcd for $C_{13}H_{12}O_3F_3BrNa$: 374.9820. Found: 374.9822.

■ ASSOCIATED CONTENT

S Supporting Information

Additional catalytic results, a proposed reaction cycle for the asymmetric carbonyl−ene reaction, ¹ H NMR and 13C NMR spectra of complex 1f, and NMR spectra and chiral HPLC traces for all of the catalysis products. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors

*Tel./Fax: (+86)-371-6778-3012. E-mail: mpsong@zzu.edu.cn. *E-mail: gongjf@zzu.edu.cn.

Notes

The auth[ors declare no com](mailto:gongjf@zzu.edu.cn)peting financ[ial](mailto:mpsong@zzu.edu.cn) [interest.](mailto:mpsong@zzu.edu.cn)

■ ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (21272217) for financial support of this work.

■ REFERENCES

(1) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.

(2) van Koten, G.; Timmer, K. J.; Noltes, G.; Spek, A. L. J. Chem. Soc., Chem. Commun. 1978, 250.

(3) For some recent reviews on pincer complexes, see: (a) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750. (b) Singleton, J. T. Tetrahedron 2003, 59, 1837. (c) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759. (d) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239. (e) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527. (f) Szabó, K. J. Synlett 2006, 811. (g) Pugh, D.; Danopoulos, A. A. Coord. Chem. Rev. 2007, 251, 610. (h) The Chemistry of Pincer Compounds; Morales-Morales, D., Jensen, C. M., Eds.; Elsevier: Amsterdam, 2007. (i) Morales-Morales, D. Mini-Rev. Org. Chem. 2008, 5, 141. (j) Serrano-Becerra, J. M.; Morales-Morales, D. Curr. Org. Synth. 2009, 6, 169. (k) Selander, N.; Szabó, K. J. Dalton Trans. 2009, 6267. (1) Selander, N.; Szabó, K. J. Chem. Rev. 2011, 111, 2048. (m) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Chem. Rev. 2011, 111, 1761. (n) Szabó, K. J. Top. Organomet. Chem. 2013, 40, 203.

(4) (a) Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P. Angew. Chem., Int. Ed. 2008, 47, 4362. (b) Baratta, W.; Chelucci, G.; Magnolia, S.; Siega, K.; Rigo, P. Chem.-Eur. J. 2009, 15, 726.

(c) Baratta, W.; Benedetti, F.; Zotto, A. D.; Fanfoni, L.; Felluga, F.; Magnolia, S.; Putignano, E.; Rigo, P. Organometallics 2010, 29, 3563. (5) (a) Feng, J.-J.; Chen, X.-F.; Shi, M.; Duan, W.-L. J. Am. Chem. Soc. 2010, 132, 5562. (b) Huang, M.; Li, C.; Huang, J.; Duan, W.-L.; Xu, S. Chem. Commun. 2012, 48, 11148.

(6) (a) Motoyama, Y.; Makihara, N.; Mikami, Y.; Aoki, K.; Nishiyama, H. Chem. Lett. 1997, 951. (b) Stark, M. A.; Jones, G.; Richards, C. J. Organometallics 2000, 19, 1282. (c) Bugarin, A.; Connell, B. T. Organometallics 2008, 27, 4357. (d) Kimura, T.; Uozumi, Y. Organometallics 2008, 27, 5159. (e) Bugarin, A.; Connell, B. T. Chem. Commun. 2011, 47, 7218.

(7) (a) Motoyama, Y.; Mikami, Y.; Kawakami, H.; Aoki, K.; Nishiyama, H. Organometallics 1999, 18, 3584. (b) Motoyama, Y.; Kawakami, H.; Shimozono, K.; Aoki, K.; Nishiyama, H. Organometallics 2002, 21, 3408. (c) Fossey, J. S.; Richards, C. J. Organometallics 2004, 23, 367. (d) Fossey, J. S.; Jones, G.; Motevalli, M.; Nguyen, H. V.; Richards, C. J.; Stark, M. A.; Taylor, H. V. Tetrahedron: Asymmetry 2004, 15, 2067.

(8) (a) Fossey, J. S.; Richards, C. J. J. Organomet. Chem. 2004, 689, 3056. (b) Stol, M.; Snelders, D. J. M.; Godbole, M. D.; Havenith, R. W. A.; Haddleton, D.; Clarkson, G.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. Organometallics 2007, 26, 3985. (c) Mitsudo, K.; Imura, T.; Yamaguchi, T.; Tanaka, H. Tetrahedron Lett. 2008, 49, 7287.

(9) (a) Ito, J.; Asai, R.; Nishiyama, H. Org. Lett. 2010, 12, 3860. (b) Ito, J.; Fujii, K.; Nishiyama, H. Chem.-Eur. J. 2013, 19, 600.

(10) (a) Motoyama, Y.; Narusawa, H.; Nishiyama, H. Chem. Commun. 1999, 131. (b) Motoyama, Y.; Okano, M.; Narusawa, H.; Makihara, N.; Aoki, K.; Nishiyama, H. Organometallics 2001, 20, 1580. (c) Motoyama, Y.; Nishiyama, H. Synlett 2003, 1883. (d) Ito, J.; Shiomi, T.; Nishiyama, H. Adv. Synth. Catal. 2006, 348, 1235. (e) Shiomi, T.; Nishiyama, H. Org. Lett. 2007, 9, 1651. (f) Ohshima, T.; Kawabata, T.; Takeuchi, Y.; Kakinuma, T.; Iwasaki, T.; Yonezawa, T.; Murakami, H.; Nishiyama, H.; Mashima, K. Angew. Chem., Int. Ed. 2011, 50, 6296. (g) Naito, T.; Yoneda, T.; Ito, J.; Nishiyama, H. Synlett 2012, 2957. (h) Itoh, K.; Tsuruta, A.; Ito, J.; Yamamoto, Y.; Nishiyama, H. J. Org. Chem. 2012, 77, 10914. (i) Toribatake, K.; Zhou, L.; Tsuruta, A.; Nishiyama, H. Tetrahedron 2013, 69, 3551. (j) Morisaki, K.; Sawa, M.; Nomaguchi, J.-Y.; Morimoto, H.; Takeuchi, Y.; Mashima, K.; Ohshima, T. Chem.-Eur. J. 2013, 19, 8417.

(11) (a) Ito, J.; Kaneda, T.; Nishiyama, H. Organometallics 2012, 31, 4442. (b) Owens, C. P.; Varela-Alvarez, A.; Boyarskikh, V.; Musaev, D. G.; Davies, H. M. L.; Blakey, S. B. Chem. Sci. 2013, 4, 2590.

(12) (a) Hosokawa, S.; Ito, J.; Nishiyama, H. Organometallics 2010, 29, 5773. (b) Hosokawa, S.; Ito, J.; Nishiyama, H. Organometallics 2012, 31, 8283.

(13) For recent reviews of pincer metal−Phebox complexes, see: (a) Nishiyama, H. Chem. Soc. Rev. 2007, 36, 1133. (b) Nishiyama, H.; Ito, J. Chem. Commun. 2010, 46, 203. (c) Ito, J.; Nishiyama, H. Synlett 2012, 509. (d) Ito, J.; Nishiyama, H. Top. Organomet. Chem. 2013, 40, 243.

(14) (a) Wu, L.-Y.; Hao, X.-Q.; Xu, Y.-X.; Jia, M.-Q.; Wang, Y.-N.; Gong, J.-F.; Song, M.-P. Organometallics 2009, 28, 3369. (b) Yang, M.- J.; Liu, Y.-J.; Gong, J.-F.; Song, M.-P. Organometallics 2011, 30, 3793. (15) (a) Hao, X.-Q.; Gong, J.-F.; Du, C.-X.; Wu, L.-Y.; Wu, Y.-J.; Song, M.-P. Tetrahedron Lett. 2006, 47, 5033. (b) Hao, X.-Q.; Xu, Y.- X.; Yang, M.-J.; Wang, L.; Niu, J.-L.; Gong, J.-F.; Song, M.-P. Organometallics 2012, 31, 835.

(16) Shao, D.-D.; Niu, J.-L.; Hao, X.-Q.; Gong, J.-F.; Song, M.-P. Dalton Trans. 2011, 40, 9012.

(17) For the preparation of ferrocene bisimidazoline metallacycle complexes as well as their applications in asymmetric catalysis, see: (a) Huang, H. X.; Peters, R. Angew. Chem., Int. Ed. 2009, 48, 604. (b) Eitel, S. H.; Jautze, S.; Frey, W.; Peters, R. Chem. Sci. 2013, 4, 2218.

(18) (a) Ohara, M.; Nakamura, S.; Shibata, N. Adv. Synth. Catal. 2011, 353, 3385. (b) Hyodo, K.; Nakamura, S.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 10337. (c) Hyodo, K.; Kondo, M.; Funahashi, Y.; Nakamura, S. Chem.-Eur. J. 2013, 19, 4128. (d) Nakamura, S.;

The Journal of Organic Chemistry Article and the Second Secon

Hyodo, K.; Nakamura, M.; Nakane, D.; Masuda, H. Chem.-Eur. J. 2013, 19, 7304.

 (19) Arai, T.; Oka, I.; Morihata, T.; Awata, A.; Masu, H. Chem.-Eur. J. 2013, 19, 1554.

(20) Wang, T.; Niu, J.-L.; Liu, S.-L.; Huang, J.-J.; Gong, J.-F.; Song, M.-P. Adv. Synth. Catal. 2013, 355, 927.

(21) For brief reviews, see: (a) Niu, J.-L.; Hao, X.-Q.; Gong, J.-F.; Song, M.-P. Dalton Trans. 2011, 40, 5135. (b) Hao, X.-Q.; Niu, J.-L.; Zhao, X.-M.; Gong, J.-F.; Song, M.-P. Chin. J. Org. Chem. 2013, 33, 663.

(22) (a) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001. (b) Belokon, Y. N.; Chusov, D.; Borkin, D. A.; Yashkina, L. V.; Bolotov, P.; Skrupskaya, T.; North, M. Tetrahedron: Asymmetry 2008, 19, 459.

(23) (a) Lu, J.; Ji, S.-J.; Teo, Y. C.; Loh, T. P. Org. Lett. 2005, 7, 159. (b) Teo, Y. C.; Goh, E. L.; Loh, T. P. Tetrahedron Lett. 2005, 46, 6209. (24) Li, Z.; Plancq, B.; Ollevier, T. Chem.—Eur. J. 2012, 18, 3144.

(25) (a) Solin, N.; Kjellgren, J.; Szabó, K. J. Angew. Chem., Int. Ed. 2003, 42, 3656. (b) Solin, N.; Kjellgren, J.; Szabó, K. J. J. Am. Chem. Soc. 2004, 126, 7026. (c) Wallner, O. A.; Szabó, K. J. Org. Lett. 2004, 6, 1829. (d) Wallner, O. A.; Szabó, K. J. Chem.-Eur. J. 2006, 12, 6976. (e) Yao, Q.; Sheets, M. J. Org. Chem. 2006, 71, 5384. (f) Piechaczyk, O.; Cantat, T.; Mézailles, N.; Le Floch, P. J. Org. Chem. 2007, 72, 4228. (g) Mazzeo, M.; Lamberti, M.; Massa, A.; Scettri, A.; Pellecchia, C.; Peters, J. C. Organometallics 2008, 27, 5741. (h) Li, J.; Siegler, M.; Lutz, M.; Spek, A. L.; Klein Gebbink, R. J. M.; van Koten, G. Adv. Synth. Catal. 2010, 352, 2474. (i) Hou, A.-T.; Liu, Y.-J.; Hao, X.-Q.; Gong, J.-F.; Song, M.-P. J. Organomet. Chem. 2011, 696, 2857. (j) Wang, T.; Hao, X.-Q.; Zhang, X.-X.; Gong, J.-F.; Song, M.-P. Dalton Trans. 2011, 40, 8964.

(26) (a) Baber, R. A.; Bedford, R. B.; Betham, M.; Blake, M. E.; Coles, S. J.; Haddow, M. F.; Hursthouse, M. B.; Orpen, A. G.; Pilarski, L. T.; Pringle, P. G.; Wingad, R. L. Chem. Commun. 2006, 3880. (b) Niu, J.-L.; Chen, Q.-T.; Hao, X.-Q.; Zhao, Q.-X.; Gong, J.-F.; Song, M.-P. Organometallics 2010, 29, 2148. (c) Bedford, R. B.; Chang, Y.- N.; Haddow, M. F.; McMullin, C. L. Dalton Trans. 2011, 40, 9034.

(27) (a) Rueping, M.; Theissmann, T.; Kuenkel, A.; Koenigs, R. M. Angew. Chem., Int. Ed. 2008, 47, 6798. (b) Zhao, J.-F.; Tjan, T. B. W.; Tan, B. H.; Loh, T. P. Org. Lett. 2009, 11, 5714. (c) Zheng, K.; Yang, Y.; Zhao, J.-N.; Yin, C.-K.; Lin, L.-L.; Liu, X.-H.; Feng, X.-M. Chem. Eur. J. 2010, 16, 9969. (d) Rueping, M.; Bootwicha, T.; Kambutong, S.; Sugiono, E. Chem.- Asian J. 2012, 7, 1195. (e) Doherty, S.; Knight, J. G.; Mehdi-Zodeh, H. Tetrahedron: Asymmetry 2012, 23, 209.

(28) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16354.

(29) Pignataro, L.; Benaglia, M.; Annunziata, R.; Cinquini, M.; Cozzi, F. J. Org. Chem. 2006, 71, 1458.

(30) Vlasaná, K.; Hrdina, R.; Valterová, I.; Kotora, M. Eur. J. Org. Chem. 2010, 7040.

(31) (a) Bai, B.; Zhu, H.-J.; Pan, W. Tetrahedron 2012, 68, 6829. (b) Zhu, S.-F.; Qiao, X.-C.; Zhang, Y.-Z.; Wang, L.-X.; Zhou, Q.-L. Chem. Sci. 2011, 2, 1135. (c) De Sio, V.; Massa, A.; Scettri, A. Org. Biomol. Chem. 2010, 8, 3055. (d) Lee, J.-Y.; Miller, J. J.; Hamilton, S. S.; Sigman, M. S. Org. Lett. 2005, 7, 1837.

(32) Liu, L.-Y.; Sun, J.; Liu, N.; Chang, W.-X.; Li, J. Tetrahedron: Asymmetry 2007, 18, 710.

(33) Wender, P. A.; Reuber, J. Tetrahedron 2011, 67, 9998.

(34) Motoyama, Y.; Sakakura, T.; Takemoto, T.; Shimozono, K.; Aoki, K.; Nishiyama, H. Molecules 2011, 16, 5387.